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Prof. G. Ferrari Trecate

1. Consider the following switched system

xk+1 = Aσ(k)xk, σ(k) ∈ {1, 2}

A1 =

[
0.4 −0.9
0.3 0.5

]
, A2 =

[
−0.7 0.1
0.3 0.6

]
Is there a common Lyapunov function certifying exponential stability?

Hint: adapt the MatLab code provided in the previous exercise session.

Solution: The MatLab code can be seen on moodle. Here, we explain why we can guarantee
exponential convergence with the common Lyapunov function. Given the Lyapunov function P ,
there exists Q < 0 such that, for any i ∈ {1, 2}, A>i PAi−P < Q. Let V (k+1) = x>(k+1)Px(k+1),
then V (k + 1)− V (k) < x(k)Qx(k). Since Q < 0, there exists a scaler µ > 0 such that Q < −µP .
Therefore, V (k+1) < V (k)−µV (k) = (1−µ)V (k) and thus V (k) decreases exponentially. Further
considering that there exists a scaler ρ > 0 such that ||x(k)||2 < ρV (k), the magnitude ||x(k)|| also
decreases exponentially.

2. For the switched system

xk+1 = Aσ(k)xk, σ(k) ∈ I = {0, 1, . . . ,M} (1)

one might think that if all matrices Ai, i ∈ I are Schur, then the zero solution is AS, independently
of the switch signal σ(k). This is unfortunately false, as shown by this system

I = {1, 2}, A1 =

[
0.9901 0.1988
−0.0994 0.9881

]
, A2 =

[
0.9424 0.0946
−0.1892 0.9405

]
(a) Check that A1 and A2 are Schur.

(b) Consider

σk =

{
1 if xk ≥ 0 or xk ≤ 0

2 otherwise

where xk ≥ 0 means (xk,1 ≥ 0 and xk,2 ≥ 0). Write the MatLab code for simulating the

system from x(0) =
[
0 1

]T
and plot x(k) in the x1 − x2 plane.

Analyze the qualitative behavior of x(k) on each orthant for understanding why stability fails.

Solution: see the MatLab code on moodle.

3. Prove that

(a) If A ∈ Rn is diagonalizable, (i.e. A = V −1DV where D is a diagonal matrix and V collects
the eigenvectors of A as columns), then, for t ∈ R, it holds eAt = V −1eDtV , i.e., A and eAt

can be diagonalized using the same matrix V .

Hint: use the definition of eAt.
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Solution: For Ak, k = 1, 2, . . . one has

Ak = (V −1DV )(V −1DV ) · · · (V −1DV )︸ ︷︷ ︸
k times

= V −1DkV

Using the definition of eAt, one has

eAt = I +At+
(At)2

2
+ · · ·+

(At)k

k!
+ · · · =

= V −1V + V −1(tD)V + V −1
(tD)2

2
V + · · ·+ V −1

(tD)k

k!
V + · · · =

= V −1

(
1 + tD +

(tD)2

2
+ · · ·+

(tD)k

k!
+ · · ·

)
V = V −1eDtV

(b) For

A =

[
λ 1
1 λ

]
λ ∈ R,

one has

eAt =
1

2

[
et(1+λ) + et(λ−1) et(1+λ) − et(λ−1)
et(1+λ) − et(λ−1) et(1+λ) + et(λ−1)

]
.

Hint: A is symmetric and hence diagonalizable.

Solution: We first compute the eigenvectors of A for eigenvalues ξ1 = λ− 1 and ξ2 = λ+ 1.
For ξ1, one has

Av1 = ξ1v1[
λ 1
1 λ

] [
v11
v12

]
= (λ− 1)

[
v11
v12

]
{
λv11 + v12 = (λ− 1)v11

v11 + λv12 = (λ− 1)v12

{
v12 = −v11
v11 = −v12

Hence v1 =
[
−1 1

]T
. By similar computations, one has that Av2 = ξ2v2 is verified by

v2 =
[
1 1

]T
. Setting

V =

[
−1 1
1 1

]
one has

V −1 =
1

2
V

Then,

eAt =
1

2
V e

[
ξ1 0
0 ξ2

]
t
V =

1

2
V
[
e(λ−1)t 0

0 e(λ+1)t

]
V

which provides the desired result.
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